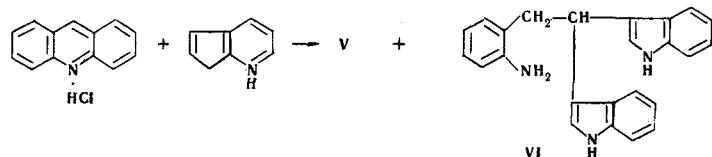
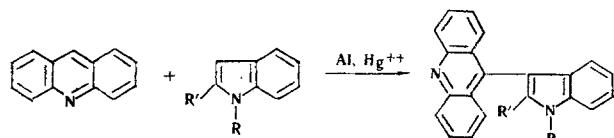


SYNTHESIS OF 9-INDOLYLACRIDINES


A. K. Sheinkman, S. G. Potashnikova,
and S. N. Baranov

UDC 547.835.2'751:543.422.4

We have shown that acridine, in the presence of an activating reagent, reacts readily with indoles to give 9-(3-indolyl)acridines (V). We have used acyl halides as activating reagents, which in this case form N-acyl acridinium salts in situ, giving with indoles V and the N-acylacridanes IV according to the scheme:



9-(3-Indolyl)acridine (V, R' = H) was also obtained in high yield by reacting acridine hydrochloride with indole, the amino- β , β -di-(3-indolyl)ethylbenzene (VI) mp 170-171°, also being formed in less than 3% yield (acetyl derivative, mp 202° [1]).

On the other hand, in the presence of aqueous solutions of mineral acids, the main reaction product was VI, with only traces of V.

V was also synthesized by dehydrocondensation of acridine with indoles in the presence of aluminum and mercuric salts, under the conditions previously discovered by us for free-radical heteroarylation [2]:

Donets Branch of Physical Organic Chemistry, Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1292-1293, September, 1970. Original article submitted February 25, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Properties of the Acridinylindoles V

R	R'	Mp, °C	Molecular formula	Found, %			Calculated, %			Yield, %
				C	H	N	C	H	N	
H	H	297-298	C ₂₁ H ₁₃ N ₂	86,26	4,75	9,45	85,98	4,46	9,54	65
H	CH ₃	313-314	C ₂₂ H ₁₆ N ₂	85,08	5,19	9,05	85,68	5,22	9,08	68
CH ₃	H	292-293	C ₂₂ H ₁₆ N ₂	85,98	5,22	9,10	85,68	5,22	9,08	64

The properties of the acridinylindoles V are given in Table 1. Their purity was checked by thin layer chromatography in various solvent systems, and their structures were confirmed by their IR and PMR spectra.

LITERATURE CITED

1. W. Noland and N. Kuryla, *J. Org. Chem.*, **25**, 486 (1960).
2. A. K. Sheinkman, V. A. Ivanov, and S. N. Baranov, *DAN UkrSSR*, 619 (1970).